

Bauaufsichtlich anerkannte Stelle für Prüfung, Überwachung und Zertifizierung Zulassung neuer Baustoffe, Bauteile und Bauarten Forschung, Entwicklung, Demonstration und Beratung auf den Gebieten der Bauphysik

Institutsleitung Univ.-Prof. Dr.-Ing. Gerd Hauser Univ.-Prof. Dr.-Ing. Klaus Sedlbauer

Prüfbericht P-BA 36-1/2013

Geräuschverhalten einer Duschfläche mit **Bodenablaufrinne im Prüfstand (DIN 4109)**

Auftraggeber: ACO Passavant GmbH

Ulsterstrasse 3 36269 Philippsthal

Prüfobjekt: Duschrinne "ACO ShowerDrain S-Line" mit Montagezubehör, der Firma

ACO Passavant GmbH, als Bodenablaufrinne für bodenebene

Duschflächen

Inhaltsverzeichnis: Tabelle 1:

Zusammenfassung der Ergebnisse

Bild 1 bis 4:

Detailergebnis

Bild 5 und 6: Anhang B:

Darstellung der Prüfobjekte, Prüfaufbau Messdurchführung und Beurteilungsgrößen

Anhang F:

Auswertung

Anhang G:

Aussagefähigkeit der Messergebnisse

Anhang P:

Beschreibung des Prüfstandes

Anhang V:

Beurteilung nach VDI 4100

Die Prüfung wurde in einem Prüflaboratorium des IBP durchgeführt, das nach DIN EN ISO/IEC 17025 durch das DAP mit der Nr. DAP-PL-3743.26 akkreditiert ist.

Prüfobjekt und Messergebnisse sind identisch mit denjenigen von Prüfbericht P-BA 36/2013.

Eine auszugsweise Veröffentlichung ist nur mit Genehmigung des Fraunhofer-Instituts für Bauphysik gestattet.

Stuttgart, 16. Oktober 2013

Bearbeiter

Prüfstellenleiter:

Dipl.-Ing.(FH) 5 Ohler

Dr. rer. nat. L. Weber

Bestimmung des Installations-Schallpegels Lin im Prüfstand

P-BA 36-1/2013 Tabelle 1

Auftraggeber:

ACO Passavant GmbH, Ulsterstrasse 3, 36269 Philippsthal

Prüfobjekte:

Duschrinnen "ACO ShowerDrain S-Line" mit Montagezubehör, der Firma ACO Passavant GmbH,

Variante 1: Bauhöhe: 55 mm, Länge 1000 mm Variante 2: Bauhöhe: 80 mm, Länge 1000 mm

als Bodenablaufrinne für bodenebene Duschflächen (Prüfobjektnr.: 10573-1 und 2, vgl. Bild 5, 6).

Prüfaufbau:

Prüfflächen bestehend aus einer schwimmenden Teilestrichfläche mit Edelstahl-Duschrinne "ACO ShowerDrain S-Line (Länge 1000 mm, umlaufender Flansch)", der Firma ACO in unterschiedlichen Einbauhöhen (Variante 1: Bauhöhe: 55 mm, Variante 2: Bauhöhe: 80 mm), eingebaut im Installationsprüfstand P12 Raum EG vorne, linke Prüfstandsecke).

Duschrinnen (Variante 1 und 2):

Die Duschrinnen wurde mit zwei höhenverstellbaren Montagefüßen auf Gummiunterlagscheiben (Dicke: ca. 1,75 mm, Länge: 80 mm, Breite: 50 mm) aufgestellt und anschließend mit je einer Schraube und Kunststoffdübeln mit der Prüfstandsdecke verschraubt.

Kunststoffablaufkörper (2 Stk. je Rinne) sowie Ablaufleitung (Variante 1: DN 32, Variante 2: DN 50) mit Mineralwolle-Trittschalldämmmatten (Dicke ca. 10 mm) unterlegt. (Details in Bild 5) Schwimmender Estrich mit umlaufendem Randdämmstreifen. Aufbau von unten nach oben:

Die Mineralwolle-Trittschalldämmmatten (25/20 mm, dynamische Steifigkeit s' = < 10 MN/m³ (Herstellerangabe)) wurden auf der Rohdecke unterhalb der Rinne durchgehend verlegt (höhenverstellbare Montagefüße in Dämmebene eingepasst).

- Mineralwolle-Trittschalldämmmatten wurden mit einer PE-Trennlage abgedeckt (Anschlüsse an

höhenverstellbare Montagefüße und Ablaufkörper abgeklebt).

- Zementestrich im Gefälle (Ablaufrinne vollständig mit Estrichmörtel unterfüttert) Variante 1: Estrichdicke ca. 50 mm / Variante 2: Estrichdicke ca. 70 mm,

- ca. 10 mm Fliesenbelag mit Kleber.

Duschrinne "ACO ShowerDrain S-Line" mit

Alle Anschlussfugen mit handelsüblichem Silikon (mit Schaumstoff-Fugenband) ausgefugt. Rinne mit Dichtband und Dichtschlämme abgedichtet. Der Aufbau erfolgte durch einen durch das IBP beauftragten Handwerksbetrieb. (vgl. Bild 5, 6 und Anhang P).

Prüfstand:

Installationsprüfstand P12, Flächenmasse der Installationswand: 220 kg/m², Flächenmasse der Decke: ca. 440 kg/m², Installationsraum: EG vorne, Messräume EG hinten, UG vorne und UG hinten. (genaue Beschreibung im Anhang P)

Prüfverfahren:

Messung in Anlehnung an DIN EN ISO 10052:2010-10, DIN 4109-11:2010-05 und DIN 4109:1989 bei Anregung durch ein Körperschallgeräuschnormal (KGN) (Anhänge B, F, G). Zusätzliche Auswertung der Messdaten nach VDI 4100:2012-10 (Anhang V).

Zusätzliche Messung der Trittschallminderung in Anlehnung an DIN EN ISO 10140-3: 2010-12.

	Erg	ek	n	is:
--	-----	----	---	-----

ÖRDERUNG DE

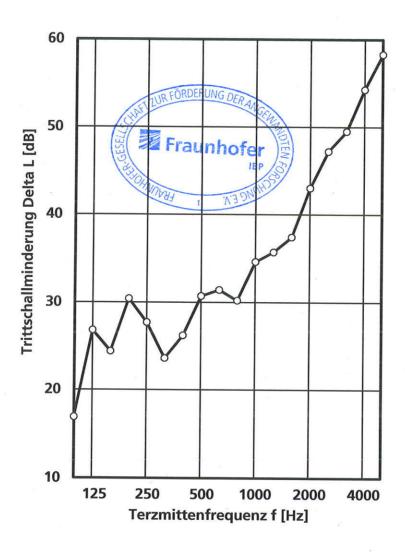
Duschrinne "ACO ShowerDrain S-Line" mit	Messraum				
Montagezubehör, der Firma ACO Passavant GmbH	UG vorne	UG hinten	EG hinten		
Installations-Schallpegel L _{AFeq,n} (L _{In}) in dB(A) nach DIN 4109, KGN auf Duschfläche					
Variante 1 : Bauhöhe: 55 mm	17	13	21		
Variante 2: Bauhöhe: 80 mm	20	16	21		
nstallations-Schallpegel L _{AFeq,nT} in dB(A) nach VDI 4100, KGN auf Duschfläche					
Variante 1: Bauhöhe: 55 mm	15	10	17		
Variante 2 : Bauhöhe: 80 mm	18	13	18		

Die Anforderungen gelten in der vorliegenden Grundrisssituation nur für den Raum UG hinten.

Prüfdatum:

11. Februar 2013

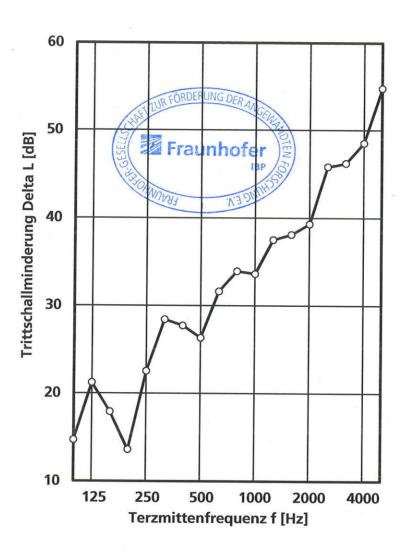
Bemerkungen:


- Die KGN-Anregung liegt hinsichtlich des erzeugten Geräuschpegels an der Obergrenze handelsüblicher Brauseköpfe.
- Der untersuchte Prüfgegenstand erfüllt in Verbindung mit der im Prüfstand vorhandenen Bausituation die Anforderungen an den Installations-Schallpegel der DIN 4109 (Änderung DIN 4109/A1:2001) sowie nach VDI 4100. (Anhänge G, P und V).

Die Prüfung wurde in einem Prüflaboratorium des IBP durchgeführt, das nach DIN EN ISO/IEC 17025 durch das DAP mit der Nr. DAP-PL-3743.26 akk/ editiert ist.

Stuttgart, den 16. Oktober 2013

Prüfstellenleiter:

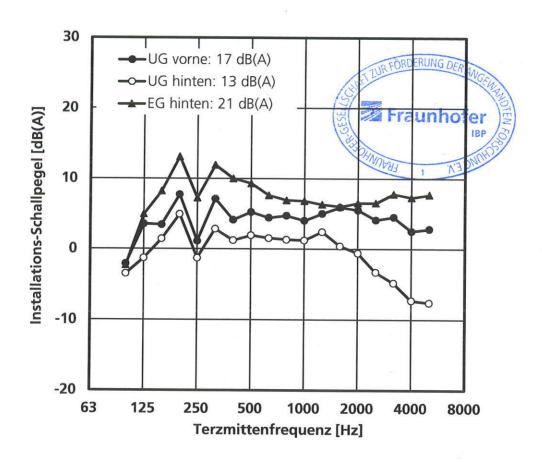


Bewertete Trittschallminderung und Spektrum-Anpassungswert nach DIN EN ISO 717-2 $\Delta L_w (C_{I,\Delta 100-2500}) = 38 (-10) dB$

Frequenzverlauf der Trittschallminderung und bewertete Trittschallminderung im Raum UG vorne für die im Raum EG vorne in einem schwimmenden Estrich angebrachte Duschrinne "ACO ShowerDrain S-Line" mit Montagezubehör, der Firma ACO Passavant GmbH,

Variante 1: Bauhöhe: 55 mm, Länge 1000 mm, als Bodenablaufrinne für bodenebene Duschflächen (Prüfobjektnr.: 10573-1).

Die Messung erfolgte in Anlehnung an DIN EN ISO 10140-3 bei Anregung mit einem Norm-Trittschallhammerwerk. Gemessen wurde jeweils der Trittschallpegel im Raum UG vorne bei Anregung auf der Teilestrichfläche des im Prüfstand eingebauten Prüfobjektes sowie bei Anregung auf der Prüfstandsdecke.



Bewertete Trittschallminderung und Spektrum-Anpassungswert nach DIN EN ISO 717-2 $\Delta L_w (C_{I,\Delta 100-2500}) = 35 (-12) dB$

Frequenzverlauf der Trittschallminderung und bewertete Trittschallminderung im Raum UG vorne für die im Raum EG vorne in einem schwimmenden Estrich angebrachte Duschrinne "ACO ShowerDrain S-Line" mit Montagezubehör, der Firma ACO Passavant GmbH,

Variante 2: Bauhöhe: 80 mm, Länge 1000 mm, als Bodenablaufrinne für bodenebene Duschflächen (Prüfobjektnr.: 10573-2).

Die Messung erfolgte in Anlehnung an DIN EN ISO 10140-3 bei Anregung mit einem Norm-Trittschallhammerwerk. Gemessen wurde jeweils der Trittschallpegel im Raum UG vorne bei Anregung auf der Teilestrichfläche des im Prüfstand eingebauten Prüfobjektes sowie bei Anregung auf der Prüfstandsdecke.

Duschrinne "ACO ShowerDrain S-Line" mit Montagezubehör, der Firma ACO Passavant GmbH, Variante 1: Bauhöhe: 55 mm, Länge 1000 mm, als Bodenablaufrinne für bodenebene Duschflächen (Prüfobjektnr.: 10573-1). Frequenzverlauf des Schalldruckpegels bei Geräuschanregung mit dem Körperschall-Geräuschnormal (KGN; Betriebsdruck: 3 bar, Durchflussrate: 0,25 l/s), gemessen in den Räumen UG vorne, UG hinten und EG hinten. In der Legende sind die A-bewerteten Gesamtschallpegel für den abgebildeten Frequenzbereich von 100 bis 5000 Hz angegeben.

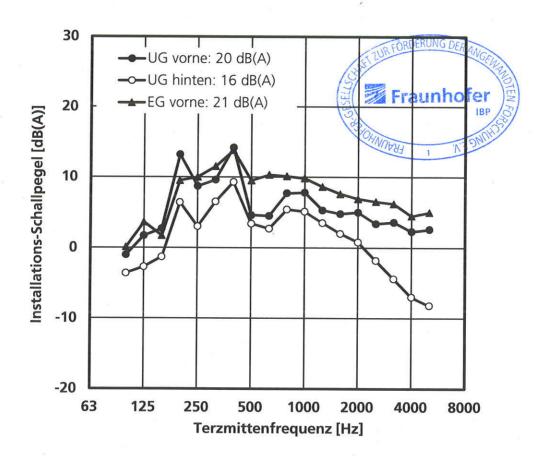


Bild 4 Duschrinne "ACO ShowerDrain S-Line" mit Montagezubehör, der Firma ACO Passavant GmbH, Variante 2: Bauhöhe: 80 mm, Länge 1000 mm, als Bodenablaufrinne für bodenebene Duschflächen (Prüfobjektnr.: 10573-2). Frequenzverlauf des Schalldruckpegels bei Geräuschanregung mit dem Körperschall-Geräuschnormal (KGN; Betriebsdruck: 3 bar, Durchflussrate: 0,25 l/s), gemessen in den Räumen UG vorne, UG hinten und EG hinten. In der Legende sind die A-bewerteten Gesamtschallpegel für den abgebildeten Frequenzbereich von 100 bis 5000 Hz angegeben.

Oben: MW-Trittschalldämmplatten wurden auf der Rohdecke unterhalb der Ablaufkörper und der Abflussleitung verlegt. (Variante 1: links, Variante 2: rechts)

Mitte links: MW-Trittschalldämmplatten wurden auf der Rohdecke unterhalb der Rinne und des durchgehend verlegt (höhenverstellbare Montagefüße in Dämmebene eingepasst).

Mitte rechts: PE-Trennlage (an höhenverstellbare Montagefüße und Ablaufkörper abgeklebt).

Unten links: Rinne mit Dichtband und Dichtschlämme abgedichtet.

Unten rechts: Prüfaufbau, Duschrinne "ACO ShowerDrain S-Line (Bsp. Variante 2)" mit Montagezubehör, der Firma ACO Passavant GmbH, als Bodenablaufrinne für bodenebene Duschflächen.

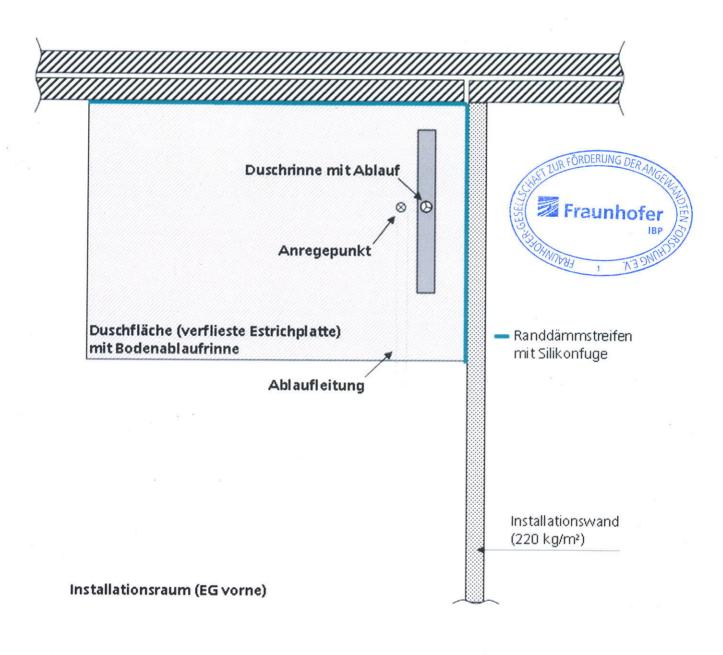


Bild 6 Lage der Duschfläche (Beispiel Variante 1, linke Prüfstandsecke) mit Bodenablaufrinne im Installationsraum (EG vorne).

Variante 2 wurde in der rechten Prüfstandsecke eingebaut (ohne Darstellung).

Messdurchführung und Beurteilungsgrößen

Die Messungen werden in Anlehnung an DIN EN ISO 10052, DIN 4109-11 und DIN 4109 durchgeführt, in denen die Messung von Geräuschen der Wasserinstallation in Gebäuden beschrieben wird. Die Geräuschanregung erfolgt mit einem im Fraunhofer-Institut für Bauphysik entwickelten und erprobten Körperschallgeräuschnormal (KGN), das ein genormtes Installationsgeräuschnormal nach DIN EN ISO 3822-1 zur Strahlbildung verwendet. Das KGN erzeugt einen konstanten Wasserstrahl, der unter genau definierten geometrischen Bedingungen auf das Prüfobjekt trifft und so eine praxisgerechte und reproduzierbare Geräuschanregung ermöglicht. Durch die Verwendung des KGN als einheitliche Anregungsquelle lässt sich das Geräuschverhalten unterschiedlicher Sanitärobjekte direkt miteinander vergleichen. Das KGN wird mit einem Fließdruck von 0,3 MPa betrieben, wobei sich ein Wasserdurchfluss von 0,26 l/s ergibt.

Die mit dem KGN gemessenen Werte liegen bei allen Anregungsarten an der oberen Grenze der bei der Verwendung handelsüblicher Brauseköpfe und Auslaufarmaturen auftretenden Schalldruckpegel. Durch Variation des Anregungsortes und der Füllhöhe kann sowohl das beim Duschen entstehende Aufprallgeräusch des Wasserstrahls auf die Objekt- bzw. Wasseroberfläche, als auch das beim Befüllen einer Wanne entstehende Geräusch nachgebildet werden. Hierbei kann auf folgende Arten angeregt werden:

KGN auf Sanitärobjekt (Wasserstrahl-Prallgeräusche)

Das KGN wird in einer Höhe von 50 cm über dem Prüfkörper angebracht und so justiert, dass der Wasserstrahl senkrecht von oben in 10 cm Abstand vom Ablauf auftrifft. Die Messung erfolgt bei geöffnetem Ablauf, so dass der Wasserstrahl auf die Objektoberfläche trifft.

KGN als Wannenfüllarmatur (Wassereinlauf bei Badewannen)

Das KGN wird an der Stelle angebracht, an der sich der Auslauf einer handelsüblichen Wannenfüllarmatur befindet. Die Höhe des KGN über dem Wannenboden beträgt 50 cm und der Strahl zeigt senkrecht nach unten. Das KGN wird bei geschlossenem Ablauf solange betrieben, bis die Wanne gefüllt ist. Sollen die Abflussgeräusche gesondert betrachtet werden, kann eine zusätzliche Messung beim Entleeren der Wanne durchgeführt werden. Die Messung der Füllgeräusche mit dem KGN kann ergänzend zu den oben beschriebenen Wasserstrahl-Prallgeräuschen durchgeführt werden.

Handelsübliche Brauseköpfe oder Auslaufarmaturen

Alternativ können an Stelle des KGN auch handelsübliche Brauseköpfe oder Auslaufarmaturen zur Anregung des Prüfobjektes verwendet werden. Der Brausekopf wird in einer Höhe von 100 cm über dem Sanitärobjekt angebracht und so justiert, dass der Wasserstrahl senkrecht von oben in 10 cm Abstand vom Ablauf auftrifft. Auf Grund der Vielzahl der im Handel erhältlichen Brauseköpfe und Armaturen und ihrer unterschiedlichen Einstellungsmöglichkeiten ist hierbei allerdings keine allgemein gültige Aussage über den Installations-Schallpegel möglich.

Anregung durch Aggregate (nur bei Whirlwannen)

Das Prüfobjekt wird durch die eingebauten Aggregate (Pumpen, etc.) angeregt, wobei in der Regel verschiedene Betriebszustände möglich sind. Es wird der "lauteste Betriebszustand" bestimmt. Die Whirlwanne ist dabei bis ca. 5 cm unterhalb des Überlaufs mit Wasser gefüllt.

Allgemeine Angaben zur Messung

Um den Einfluss der Belastung des Sanitärobjektes durch eine Person zu berücksichtigen, werden alle Messungen (außer bei Whirlwannen und beim Wassereinlauf) mit einer statischen Vorlast durchgeführt. Dazu wird ein mit 60 l Wasser gefülltes Kunststoffass auf zwei mit Gummi unterlegten Mauersteinen auf die Objektoberfläche gestellt. Das Gewicht der Last beträgt ca. 65 kg, die Aufstandsfläche ca. 2 x 200 cm².

Die Ableitung des Abwassers erfolgt geräuscharm über körperschallisolierte Rohre. Hierdurch ist sichergestellt, dass die Abwassergeräusche keinen Einfluss auf die gemessenen Schalldruckpegel haben.

Bei stationären Geräuschen wird der Schalldruckpegel abweichend von DIN EN ISO 10052 an sechs im Messraum verteilten Punkten erfasst und räumlich und zeitlich gemittelt. Hierdurch wird die Genauigkeit und Reproduzierbarkeit der Messergebnisse verbessert, um den erhöhten Anforderungen an Prüfstandsmessungen Rechnung zu tragen. Der auf diese Weise ermittelte Wert (L_{AFeq,10}) wird als Installations-Schallpegel L_{In} im Prüfstand herangezogen.

Bei zeitlich veränderlichen Geräuschen (z.B. WC-Spülung, KGN als Wannenfüllarmatur) wird nur an einer Mikrofonposition gemessen und der Zeitverlauf des Schalldruckpegels während des Vorgangs aufgezeichnet.

Der im Prüfbericht angegebene Installations-Schallpegel L_{In} wird nach Anhang F ermittelt. Bei stationäre Signalen (z.B. Wasserstrahl-Prallgeräusche), wird abweichend von DIN 4109-11 und DIN EN ISO 10052 nicht der Maximalwert (L_{AFmax,n}) sondern der zeitlich und räumlich gemittelte Pegel (L_{AFeq,10}) gemessen. Dies gewährleistet die Einhaltung der für Prüfstandsmessungen obligatorischen Reproduzierbarkeits- und Genauigkeitsanforderungen (u. a. durch die Möglichkeit zur Störgeräuschkorrektur), was bei Verwendung des Maximalpegels, der gemäß den oben genannten Normen für Messungen am Bau bestimmt ist, nicht realisierbar wäre. Aufgrund umfangreicher Erfahrungen ist davon auszugehen, dass die Differenz zwischen L_{AFmax,n} und L_{AFeq,10} im Normalfall maximal 2-3 dB beträgt.

Bei zeitlich veränderlichen Geräuschen (z. B. WC-Spülung) wird auch im Prüfstand der Maximalpegel gemessen. Die hierfür im Prüfbericht angegebene Messgröße L_{AF,10} (entspricht dem Installations-Schallpegel L_{In}) ist gleichbedeutend mit dem Maximalpegel L_{AFmax,n} nach DIN 4109-11 und DIN EN ISO 10052.

Auswertung der Messungen

Stationäre Geräusche

Der gemessene Schalldruckpegel liegt als zeitlich und räumlich gemitteltes Terzspektrum im Frequenzbereich von 100 Hz bis 5 kHz vor. Es wird zunächst eine Fremdgeräuschkorrektur durchgeführt. Anschließend wird das Messsignal auf eine äquivalente Schallabsorptionsfläche von $A_0 = 10 \text{ m}^2$ bezogen und A-bewertet:

(1)
$$L_{i,AF,10} = 10 \cdot lg \left(10^{\frac{L_{i,F}}{10}} - 10^{\frac{L_{i,S}}{10}} \right) + 10 \cdot lg \frac{A_i}{A_0} + k(A)_i$$
 [dB(A)]

Wenn der Abstand zwischen dem gemessenen Terzpegel und dem Fremdgeräuschpegel weniger als 3 dB beträgt, wird auf eine Fremdgeräuschkorrektur verzichtet. Stattdessen wird im Sinne einer Maximalabschätzung der gemessene Fremdgeräuschpegel verwendet. Der Gesamtschallpegel ergibt sich durch energetische Addition der Terzwerte:

(2)
$$L_{AF,10} = 10 \cdot lg \left(\sum_{i=1}^{18} 10^{\frac{L_{i,AF,10}}{10}} \right)$$
 [dB(A)]

wobei i die Nummer der Terzbänder von 100 Hz bis 5 kHz bezeichnet. Der berechnete Pegel LAF,10 entspricht dem Schallpegel, der in einem mäßig möblierten Empfangsraum unter sonst gleichen Bedingungen auftritt.

Zeitlich veränderliche Geräusche

Das Messsignal besteht hier aus einer Folge von Terzspektren (Frequenzbereich 100 Hz bis 5 kHz) die mit einem Zeitabstand von 0,125 s nacheinander am selben Ort gemessen werden. Abgesehen davon, dass auf eine Fremdgeräuschkorrektur verzichtet wird, erfolgt die Auswertung in gleicher Weise wie bei stationären Geräuschen. Aus dem Zeitverlauf wird anschließend der Maximalwert (LAF,10,max) ermittelt. Die hierfür im Prüfbericht angegebene Messgröße LAF,10,max ist gleichbedeutend mit dem Maximalpegel LAFmax,n (entspricht dem Installations-Schallpegel L_{In}) nach DIN 4109-11 und DIN EN ISO 10052.

Aussagefähigkeit der Messergebnisse (DIN 4109)

Übertragbarkeit der Messergebnisse auf andere Bausituationen

Die ermittelten Installations-Schallpegel hängen außer von den Eigenschaften der geprüften Installation noch von weiteren Einflussgrößen, wie z.B. den Montagebedingungen, der Bauausführung und der Anordnung von Sendeund Empfangsraum ab. Die im Prüfbericht angegebenen Werte gelten daher nur in Verbindung mit den baulichen Verhältnissen im Installationsprüfstand. Eine Übertragung der Werte auf andere Bauten ist nur dann möglich, wenn gleichartige bauliche Verhältnisse vorliegen und die Montagebedingungen übereinstimmen. Hierbei ist
zu beachten, dass schon geringe Änderungen der Montagebedingungen, wie z.B. die Verwendung unterschiedlicher Befestigungselemente oder Dämmstoffe, unter Umständen große akustische Veränderungen bewirken können. Gleiches gilt auch für Ausführungsmängel, die Körperschallbrücken verursachen.

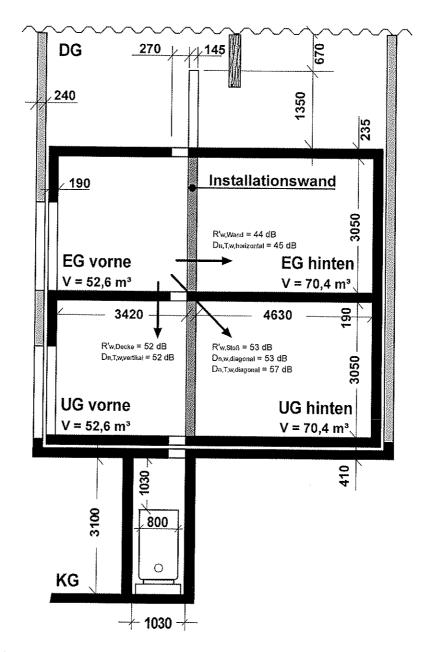
Nachweis von Schallschutzanforderungen

Die in DIN 4109 festgelegten Schallschutzanforderungen beziehen sich auf die Geräuschsituation in ausgeführten Bauten. Für die von Wasserinstallationen und anderen haustechnischen Anlagen hervorgerufenen Geräusche ist der Installations-Schallpegel Lin (bzw. der maximale Schalldruckpegel Lafmax,n) die maßgebende Beurteilungsgröße. Der Installations-Schallpegel ist nach DIN 4109-11 und DIN EN ISO 10052 zu messen, wobei Geräuschspitzen, die bei manueller Betätigung entstehen, derzeit nicht berücksichtigt werden. Nach der aktuellen Fassung der DIN 4109 (DIN 4109/A1 vom Januar 2001) gelten für den Installations-Schallpegel folgende Anforderungen:

Wohn- und Schlafräume:

 $L_{in} \le 30 dB(A)$

Unterrichts- und Arbeitsräume:


 $L_{in} \leq 35 \text{ dB(A)}$

Nach Beiblatt 2 zu DIN 4109 können Schalldruckpegelwerte die 5 dB(A) unter den oben aufgeführten Werten liegen, als Anforderungen für einen erhöhten Schallschutz herangezogen werden.

Die einzige Möglichkeit, um die Einhaltung der Schallschutzanforderungen bereits in der Planungsphase nachzuweisen, besteht - von Sonderfällen abgesehen - in der Durchführung einer Eignungsprüfung in einem Musterbau. Hierbei wird vorausgesetzt, dass der Musterbau und das geplante Gebäude gleichartig aufgebaut sind. Ist dies nicht der Fall, so muss zumindest gewährleistet sein, dass das geplante Gebäude - bezogen auf die Übertragung von Installationsgeräuschen - keine geringere Schalldämmung als der Musterbau aufweist.

Als Musterbau dient im vorliegenden Fall der Installationsprüfstand im Fraunhofer-Institut für Bauphysik. Der Installationsprüfstand entspricht hinsichtlich seiner schalltechnischen Eigenschaften einem üblichen Wohngebäude in Massivbauweise. Die in diesem Prüfstand ermittelten Installations-Schallpegel können daher direkt zum Nachweis der in DIN 4109 festgelegten Schallschutzanforderungen herangezogen werden, sofern die Übertragbarkeit der Messergebnisse gewährleistet ist (siehe oben). Da die Installation meist im Raum EG vorne angebracht wird, ist der Raum UG hinten bei üblicher Grundrissgestaltung als nächstgelegener schutzbedürftiger Raum anzusehen. Für die Einhaltung der Schallschutzanforderungen ist deshalb der in diesem Raum gemessene Installations-Schallpegel maßgebend.

Prüfstand

Schnittzeichnung des Installationsprüfstands im Fraunhofer-Institut für Bauphysik (Maßangaben in mm). Der Prüfstand besteht aus je zwei übereinanderliegenden Räumen im Erd- und Untergeschoss (EG und UG), so dass in Verbindung mit Dach- und Kellergeschoss (DG und KG) auch über mehrere Stockwerke reichende Installationen, wie z. B. Abwassersysteme, geprüft werden können. Die beiden Installationswände (11,5 cm Kalksandstein-Vollsteine (KSV), beidseitig verputzt) können nach Bedarf ausgetauscht werden. Im Normalfall werden einschalige Massivwände mit einer Flächenmasse von 220 kg/m² nach DIN 4109 verwendet. Da die Schalldämmung dieser Wände nicht den Anforderungen an eine Wohnungstrennwand (R'w≥ 53 dB) genügt, befinden sich die nächstgelegenen schutzbedürftigen Räume bei üblicher Grundrissgestaltung diagonal über oder unter dem Installationsraum. Durch seine zweischalige, körperschallisolierte Bauweise ist der Installationsprüfstand speziell für die Messung niedriger Schalldruckpegel geeignet. Die Messräume sind so gestaltet, dass die Nachhallzeiten im untersuchten Frequenzbereich zwischen 1 und 2 s liegen. Die Decke sowie die seitlich flankierenden Bauteile, mit einer mittleren flächenbezogenen Masse von etwa 440 kg/m², bestehen aus 19 cm Stahlbeton.

Prüfausrüstung und Geräte

Bei den Messungen im Installationsprüfstand P12 des Fraunhofer-Instituts für Bauphysik kommen folgende Messgeräte zum Einsatz:

Art	Тур	Hersteller	
Analysator	Soundbook_MK2_8L	Sinus Messtechnik	
½"-Mikrofon-Set	46 AF (Kapsel: Typ 40 AF-Free Field; Vorverstärker: Typ 26 TK)	G.R.A.S	
1"-Mikrofon	4179	Bruel & Kjær	
1"-Vorverstärker	2660	Bruel & Kjær	
Mikrofon-Kalibrator	4231	Bruel & Kjær	
Beschleunigungsaufnehmer	4371 und 4370		
Ladungsverstärker	Nexus 2692-A-0 4	Bruel & Kjær	
Körperschall-Kalibrator	VC11	MMF	
Verstärker	LBB 1935/20	Bosch Plena	
Lautsprecher	MLS 82	Lanny	
Vergleichsschallquelle	382	Rox	
Norm-Trittschall-Hammerwerk	211	Norsonic	

Alle Messgeräte unterliegen regelmäßig durchgeführten internen und externen Funktionskontrollen, sind kalibriert und (soweit erforderlich und möglich) geeicht.

Beurteilung für erhöhten Schallschutz nach VDI 4100 vom Oktober 2012

Die Richtlinie VDI 4100 enthält Vorschläge für einen erhöhten Schallschutz in Wohnungen. Diese Vorschläge reichen über die in DIN 4109 enthaltenen Mindestanforderungen hinaus und können zwischen Auftraggeber und ausführendem Unternehmen zusätzlich vereinbart werden.

Die Messung von Installationsgeräuschen erfolgt nach VDI 4100 und DIN 4109 in gleicher Weise. Die Einzelheiten des Verfahrens und die Auswertung der Ergebnisse sind in Anhang F beschrieben. Der einzige Unterschied zwischen den beiden Normen besteht darin, dass die gemessenen Pegel in DIN 4109 auf eine äquivalente Schall-Absorptionsfläche von $A_0 = 10 \text{ m}^2$ bezogen werden, während in VDI 4109 eine Nachhallzeit von $T_0 = 0.5 \text{ s}$ als Bezugswert verwendet wird. Zwischen den beiden Pegeln besteht folgender Zusammenhang:

$$L_{AF,nT} = L_{AF,n} - 10 \text{ Ig(V)} + 15$$

mit L_{AF,nT} = Standard-Schallpegel der Installationgeräusche nach VDI 4100 [dB(A)]

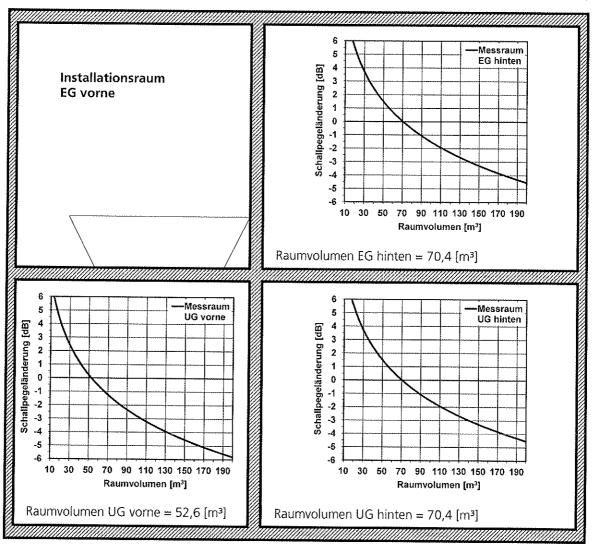
L_{AF,n} = Norm-Schallpegel der Installationgeräusche nach DIN 4109 [dB(A)]

V = Volumen des Empfangsraums [m³]

Der Indizes A und F bezeichnen hierbei die Frequenzbewertung A und die Zeitbewertung "Fast". Je nachdem, ob ein zeitlicher gemittelter Wert oder ein Maximalpegel gemessen wird, wir an diese Indizes noch der Index "eq" oder "max" angehängt. Dies gilt für den Standard- und den Norm-Schallpegel in gleicher Weise, also z. B. LaFeq.nT oder LaFmax.n.

Die Standard-Schallpegel nach VDI 4100 und der Norm-Schallpegel nach DIN 4109 unterscheiden sich um einen konstanten Wert, der lediglich vom Volumen des Empfangsraums abhängt. Während der Norm-Schallpegel vom Raumvolumen unabhängig ist, nimmt der Standard-Schallpegel mit wachsendem Raumvolumen ab. Da sich die Schallschutzanforderungen der VDI 4100 auf den Standard-Schallpegel beziehen, müssen die im Installations-Prüfstand des IBP gemessenen Werte zum Nachweis der Anforderungen auf das Volumen der vor Ort vorhandenen schutzbedürftigen Räume umgerechnet werden. Die Umrechnung erfolgt nach folgender Beziehung:

$$L_{AF,nT,Bau} = L_{AF,nT,Lab} + 10 lg(V_{Lab}N_{Bau})$$


mit LAF,nT,Bau = Standard-Schallpegel der geprüften Installation am Bau

LAE,nT,Lab = Standard-Schallpegel der geprüften Installation im Prüfstand

V_{Lab} = Volumen des Empfangsraums im Prüfstand

V_{Bau} = Volumen des schutzbedürftigen Raumes am Bau

Die Volumina der drei Empfangsräume im Installationsprüfstand des IBP und grafische Darstellungen der obigen Berechnungsformel zur direkten Ablesung der Ergebniswerte sind nachfolgend dargestellt:

Bild 1: Änderung des im Installationsprüfstand P12 gemessenen Standard-Schallpegels für Räume mit abweichendem Volumen. Für die drei Messräume UG vorne, UG hinten und EG hinten ist in den Diagrammen jeweils die resultierende Pegeländerung gegenüber dem im Prüfbericht angegebenen Messwert in Abhängigkeit vom neuen Raumvolumen angegeben. Stimmen die Volumina des neuen Raum und des jeweiligen Messraums überein, so bleibt der Pegel unverändert (Pegeländerung $\Delta L = 0$ dB). Ist der neue Raum größer als der jeweilige Messraum, so nimmt der Schallpegel ab ($\Delta L < 0$), ist er kleiner, so steigt der Pegel an ($\Delta L > 0$).

Anforderungen

Nach VDI 4100 gelten in Wohnungen alle Räume mit einer Grundfläche ≥ 8 m² als schutzbedürftige Räume. Für die Geräusche haustechnischer Anlagen und für Trittschall sind Küchen, Bäder, WCs, Flure und Nebenräume hiervon allerdings ausdrücklich ausgenommen. Bei üblicher Grundrissanordnung (Bad über Bad) ist deshalb für die im Prüfstand ermittelten Werte im Normalfall der Raum UG hinten als nächstgelegener schutzbedürftiger Raum anzusehen.

Die Anforderungswerte sind in der VDI 4100 nach Schallschutzstufen (SSt) eingeteilt, die unterschiedlichen Komfort-Niveaus entsprechen:

Tabelle 1: Komfortniveau und akustische Situation für die drei Schallschutzstufen SSt I bis SSt III nach VDI 4100.

SSt I	"gegenüber einfachster Ausführung und Ausstattung angehoben"	
	"unzumutbare Belästigungen werden im Allgemeinen vermieden"	
SSt II	"durchschnittliche Komfortansprüche"	
	"im Allgemeinen nicht störend"	
SSt III	"besondere Komfortansprüche"	
	"nicht oder nur selten störend"	

Für die drei Schallschutzstufen sind in VDI 4100 jeweils unterschiedliche Anforderungen angegeben. Da SSt III das höchste Komfortniveau repräsentiert, gelten hier der die strengsten Anforderungen, d. h. die für Installationsgeräusche zulässigen Pegel sind hier am niedrigsten. Die Anforderungswerte für Mehrfamilienhäuser bzw. Einfamilien-Doppel- und Einfamilien-Reihenhäuser sind in der nachfolgenden Tabelle dargestellt:

Tabelle 2: Schallschutz-Anforderungen für gebäudetechnische Anlagen in Mehrfamilienhäuser bzw. Einfamilien-Doppel- und Einfamilien-Reihenhäuser nach VDI 4100 für die Schallschutzstufe SSt I bis III. Die Anforderungen gelten für die Schallübertragung zwischen fremden Wohnungen. Die Geräusche von Wasserversorgungs- und Abwasseranlagen werden hierbei gemeinsam betrachtet.

Bausituation	akustische Größe [dB(A)]	SSt1	SSt II	SSt III
Mehrfamilienhaus	L _{AFmax,nT} bzw. L _{AFeq,nT} a) b)	≤ 30	≤ 27	≤ 24
Einfamilien- Doppel- und Einfamilien- Reihenhäuser	L _{AFmax,nT} bzw. L _{AFeq,nT} a) b)	≤ 30	≤ 25	≤ 22

- a) Einzelne kurzzeitige Geräuschspitzen, die beim Betätigen (Öffnen; Schließen, Umstellen, Unterbrechen u. Ä.) der Armaturen und Geräte der Wasserinstallation entstehen, sollen die Kennwerte der SSt II und SSt III um nicht mehr als 10 dB übersteigen. Dabei wird eine bestimmungsgemäße Benutzung vorausgesetzt.
- b) Da es sich bei Installationsgeräuschen vielfach um zeitliche veränderliche Signale handelt, sieht VDI 4100 hierfür die Messung des Maximalpegels LAFmax,nT vor. Bei stationären Signalen, wie z. B. Wasserstrahl-Prallgeräuschen, ist es jedoch günstiger, statt dessen den Mittelungspegel LAFeq,nT zu bestimmen, da nur auf diese Weise die für Prüfstandsmessungen obligatorischen Reproduzierbarkeits- und Genauigkeitsanforderungen eingehalten werden. Der gemessene Mittelungspegel ist im allgemeinen etwas geringer als der Maximalpegel; umfangreichen Erfahrungen zufolge beträgt der Unterschied jedoch nicht mehr als maximal 2-3 dB.

Neben den oben genannten Anforderungen für die Schallübertragung zwischen fremden Wohnungen enthält VDI 4100 auch Empfehlungen für den Schallschutz im eigenen Wohnbereich. Die hierfür geltenden Anforderungswerte und die Bedeutung der zugehörigen Schallschutzstufen können VDI 4100 entnommen werden.

Anmerkung zur Behandlung von Nutzergeräuschen in VDI 4100:

Für die häufig zu Beschwerden führenden Nutzergeräusche (z. B. Abstellen eines Zahnputzbechers auf eine Abstellplatte, Öffnen und Schließen des WC-Deckels, Spureinlauf, Rutschen in der Badewanne, Zuschlagen der Türen (auch von Wand- und Einbauschränken usw.) wurden auch für die Schallschutzstufen SSt II und SSt III keine Kennwerte festgelegt, da diese Geräusche nur sehr schlecht reproduzierbar sind und von der jeweiligen Bausituation abhängen. Es wird jedoch davon ausgegangen, dass diese Geräusche – bei bestimmungsgemäßer Nutzung – durch Verwendung üblicher Maßnahmen zur Körperschalldämmung bei der Montage von Sanitärausstattungsgegenständen und Schränken so weit wie möglich gemindert werden.